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Yet another method of proof of de Montessus' 1902 theorem is given. We show
how this proof readily extends to row convergence theorems for four different kinds
of vector Pade� approximants. These approximants all belong to the category
associated with vector-valued C-fractions formed using generalised inverses. The
proof of a conjecture by Graves-Morris and Saff (J. Comput. Appl. Math. 23, 1988,
63�85) is given and new row convergence theorems for hybrid vector Pade�
approximants are proved. � 1997 Academic Press

1. INTRODUCTION

de Montessus' 1902 theorem [16] is the prototype row convergence
theorem for Pade� approximants. Under the principal hypothesis that f (z)
is a function which is analytic at the origin, meromorphic in a disk |z|<r,
and having precisely m poles in that disk, de Montessus essentially showed
that the row sequence of Pade� approximants of type [l�m] converges to
f (z) as l � � in the disk, except near the poles of f (z). His theorem has
numerous proofs which facilitate different generalisations. In this paper we
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introduce yet another proof of de Montessus' theorem based on a Cauchy
representation of the MacLaurin coefficients of f (z). More importantly, we
are concerned with extensions of de Montessus' theorem to the vector case
when the function f(z) has MacLaurin coefficients ci # Cd.

Convergence theorems for vector Pade� approximants usually fall into two
categories. One category is alternatively called simultaneous Pade� approx-
imants [1, 2]. Analogues of de Montessus' theorem for these approximants
have been established [11, 24]. In this paper, we are concerned with the
other category, in which vector inverses are directly or indirectly involved.
The first vector-valued corresponding continued fraction was introduced by
Wynn [26, 27]. Typically, these fractions take the form

F(z)=b0+
z
b1+

z
b2+

z
b3+

} } } (1.1)

with bi # Cd and z # C. The convergents of these fractions are interpreted
and evaluated using Moore�Penrose generalised inverses. For a vector
v :=(v1 , v2 , ..., vd) # Cd, this inverse is defined by

v&1 :=v*� |v| 2,

where the asterisk denotes the complex conjugate, and |v| 2 :=�d
i=1 vi vi*.

The associated vector Pade� approximants typically take the form

R(z)=P(z)�Q(z), (1.2)

where P(z) is a vector numerator polynomial of degree n at most and Q(z)
is a scalar denominator polynomial of even degree 2k precisely [5]. The
approximants of types [2k�2k] and [2k+1�2k] would correspond to the
convergents of (1.1). By taking z=1, the approximants are related to
entries in the vector epsilon table by

R(1)== (n&2k)
2k , n=2k, 2k+1, ... . (1.3)

In general terms, McLeod [15] showed that the entries = ( j )
2k of (1.3), for

fixed k, sum a k-component vector-valued geometric series. Graves-Morris
and Saff [12] proved the first row convergence theorem for the con-
vergence of vector Pade� approximants of types [n�2k] with k fixed for
the MacLaurin series of a vector-valued meromorphic function having
precisely k poles in a disk |z|<r, much as in de Montessus' 1902 theorem.
An important consequence of this result is that it proved, in general terms,
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that the column = ( j )
2k of the vector epsilon table converges rapidly as

j � � to the sum of a k-component vector-valued geometric series.
Because vector Pade� approximants which converge to a vector-valued
meromorphic function f(z) having k poles in a disk have denominators
of degree 2k and not k, hybrid vector Pade� approximants of type [n�k]
were introduced by Graves-Morris [7]. These approximants also satisfy
a McLeod-type theorem [8], and Roberts has shown that they have a
number of attractive properties [22].

In Section 2, we introduce new integral representations of the denominator
polynomial of various types of vector Pade� approximants based on a
Cauchy representation of the coefficients of the given MacLaurin series.
Once the denominator polynomials have been specified, the actual
approximants are constructed using the accuracy-through-order principle,
as are Pade� type approximants.

In Section 3, we give a proof of a row convergence theorem which
applies equally well to vector-valued Pade� approximants and to their
hybrid form. The method of proof applies likewise to the approximants
derived in the framework of a complex Clifford algebra [18]. In fact, we
obtain four distinct convergence theorems, each analogous to de Montessus'
theorem. An important conclusion is that rapid convergence is established
for several kinds of vector-valued Pade� approximants for vector series
which are dominated by precisely k geometric components. As a bonus, the
conjecture of Graves-Morris and Saff [12] is, in large measure, proved.

2. NEW FORMS FOR THE DENOMINATOR POLYNOMIALS

In this section, we introduce new integral representations of the denomi-
nator polynomials of several different types of vector Pade� approximants.
Except in degenerate cases [10], these polynomials are unique up to an
unimportant constant multiplier.

In Subsection 2.1, we derive formulae for the denominator polynomial
,(z) of degree 2k of a vector Pade� approximant of type [n�2k] associated
with vector-valued continued fractions which are interpreted (and can be
evaluated) using generalised inverses. In Subsection 2.2, we state the equiv-
alent formula for the denominator polynomial _(z) of degree k for a hybrid
vector Pade� approximant of type [n�k].

In Subsection 2.3, we state the formula for a denominator polynomial
,C(z) of degree 2k of a vector Pade� approximant of type [n�2k] associated
with a vector-valued continued fraction formulation which is interpreted
using a complex Clifford algebra. We also state a similar formula for the
denominator polynomial _C(z), of degree k, of the associated hybrid
approximant.
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2.1. The Denominator Polynomial of a Generalised Inverse, Vector-Valued
Pade� Approximant

The determinantal formula for the denominator polynomial of a
generalised inverse vector-valued Pade� approximant of type [n�2k] for the
function

f(z)=c0+c1 z+c2 z2+..., ci # Cd (2.1)

is

0 M12 } } } M1, 2k M1, 2k+1

M21 0 } } } M2, 2k M2, 2k+1

Q(z)= } b b b b } , (2.2)

M2k, 1 M2k, 2 } } } 0 M2k, 2k+1

z2k z2k&1 } } } z 1

where

Mij := :
j&i&1

l=0

cl+i+n&2k } c*j&l+n&2k&1 if i< j
(2.3)

:=&Mji if j�i

for 1�i, j�2k+1. Equation (2.3) also defines the matrix M # R(2k+1)_(2k+1).
From (2.1) we find that

c j=
1

2?i |C
x&j&1f(x) dx, (2.4)

where C is the usual Cauchy contour enclosing x=0; here i=- &1, and
it is to be distinguished from i which we use as an index. We use a dot to
denote the scalar product a } b=�d

i=1 aibi for a, b # Cd. It is convenient to
define

e(x) :=
1

2?i
x&n&1f(x) (2.5)

for use in Cauchy integrals.
The functional complex conjugate of a function f (z) having a Taylor

expansion

f (z)= :
�

i=0

fi (z&x0) i
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about any point x0 on the real axis is

f *(z) := :
�

i=0

fi*(z&x0) i,

and thence by analytic continuation beyond the circle of convergence. If
f (z)= f *(z), so that the Taylor coefficients of f (z) are real, f (z) is said to
be a real symmetric function [23]. We also use a star product, which is a
symmetrised scalar product, defined by

e(x) V e(y) := 1
2(e(x) } e*(y)+e*(x) } e(y)). (2.6)

By adapting the approach of Woodcock and Graves-Morris [25] (who use
the umbral calculus), we obtain

Mij=\ 1
2?i+

2

|
C2
|

C1

:
j&i&1

l=0

x&l&i&n+2k&1y&j+l&n+2kf(x) } f*(y) dx dy

=|
C2
|

C1

(xy)2k+1 x&iy&j&x&jy&i

x&y
e(x) } e*(y) dx dy

=|
C2
|

C1

(xy)2k+1 x&iy&j&x&jy&i

x&y
e(x) V e(y) dx dy

={|C2
|

C1

+|
C1

|
C2= (xy)2k+1 x&iy&j

x&y
e(x) V e(y) dx dy

=2 |
C
|

C
(xy)2k+1 x&iy&j

x&y
e(x) V e(y) dx dy, (2.7)

where the contours C1 , C2 are taken to lie inside, outside C, respectively,
and then the limit C1 , C2 � C is taken, so that the x-integral over C in
(2.7) is to be understood as a principal value integral. Hence

Q(z)=22k |
C
|

C
} } } |

C
V(x, y, z) `

2k

i=1

e(xi) V e(yi)
xi&yi

dxi dyi , (2.8)

where x :=(x1 , x2 , ..., x2k), y :=(y1 , y2 , ..., y2k) # C2k, and

V(x, y, z) := }
x2k

1 y2k
1

b
x1

2k y2k
2k

z2k

} } }

} } }
} } }

x2k
1 y0

1

b
x1

2k y0
2k

1
} . (2.9)
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Using the Vandermonde expansion of (2.9) in (2.8), we obtain

Q(z)=22k |
C
|

C
} } } |

C
`
2k

i< j

(yi&yj) `
2k

i=1

(yi&z)x2k+1&i
i

e(xi) V e(yi)
xi&yi

dxi dyi .

(2.10)

By permuting the pairs (xi , yi), 1�i�2k, in the integrand of (2.10), we
obtain

Q(z)=
22k

(2k)! |C
|

C
} } } |

C
`
2k

i< j

(yi&yj)(xi&xj)

_ `
2k

i=1

xi (yi&z)
xi&yi

e(xi) V e(yi) dxi dyi . (2.11)

This formula is our first (principal value) integral representation for Q(z).
An alternative to (2.11) is obtained by applying Cayley's 1857 theorem

[3] to the bordered anti-symmetric determinant. To express the theorem,
we introduce the notation X" i; j to denote the matrix formed by deletion of
row i and column j of a given matrix X, and deletion of extra rows and
columns is denoted similarly. We introduce the auxiliary anti-symmetric
determinant

0 M12 } } } M1, 2k+1 z2k

M21 0 } } } M2, 2k+1 z2k&1

Z := } b b b b } . (2.12)

M2k+1, 1 M2k+1, 2 } } } 0 1

&z2k &z2k&1 } } } &1 0

From Cayley's theorem, we have

Q(z)=Pf(Z)_Pf(Z"2k+1, 2k+2; 2k+1, 2k+2). (2.13)

For the present purposes, the Pfaffian of an anti-symmetric matrix A # C2k_2k

is conveniently defined as

Pf(A) :=
1

2kk!
:
_

sign _ `
k

i=1

A_(2i&1), _(2i) (2.14)

[4, 14], where each permutation _ can be expressed as

_=_1
i1

2
i2

} } }
} } }

2k
i2k& . (2.15)
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The factorisation (2.13) involves the polynomial Pfaffian Pf(Z) multiplied
by a constant Pfaffian. To get their integral representations, it is easiest to
go back to (2.2), from which we have

Q(z)= :
2k

j=0

z2k& j(&1) j det M"2k+1; j+1 . (2.16)

We apply Cayley's theorem to the (even order, bordered anti-symmetric)
determinant of M" j+1; 2k+1 in (2.16) and deduce that

Q(z)=,(z) Pf(M"2k+1; 2k+1), (2.17)

where

,(z)= :
2k

j=0

z2k& j (&1) j Pf(M" j+1; j+1). (2.18)

Hence, using Pfaffian notation [17], we have

,(0)=Pf(M"2k+1; 2k+1)=

| M12 M13

M23

} } }
} } }

M1, 2k

M2, 2k

b
M2k&1, 2k

} . (2.19)

From (2.12), (2.13), and (2.17)

| M12 M13 } } } M1, 2k+1 z2k

M23 } } } M2, 2k+1 z2k&1

,(z)=Pf(Z)= b b } . (2.20)

M2k, 2k+1 z

1

We obtain an integral representation for ,(0), given by (2.19), by using
(2.7) and (2.14):

,(0)=
1
k!

:
_

sign _ |
C
|

C
} } } |

C

x&i1
1 y&i2

1

x1&y1

} } }
x&i2k&1

k y&i2k
k

xk&yk

_ `
k

i=1

(xi yi)
2k+1 e(xi) V e(yi) dxi dyi . (2.21)
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Similarly, by using (2.7) and (2.14) in (2.18), we obtain

,(z)=
1
k! |C

|
C

} } } |
C

D(x, y, z) `
k

i=1

e(xi) V e(yi)
xi&yi

dxi dyi , (2.22)

where

D(x, y, z)= }
x2k

1 x2k&1
1 } } } x1 1

} .

y2k
1 y2k&1

1 } } } y1 1
b b b b

x2k
k x2k&1

k xk 1

y2k
k y2k&1

k } } } yk 1

z2k z2k&1 } } } z 1

By expansion of D(x, y, z), we obtain

,(z)=
1
k! |C

|
C

} } } |
C

`
k

i< j

(xi&xj)(yi&yj)(xi&yj)(yi&xj)

_ `
k

j=1

(z&xj)(z&yj) e(xj) V e(yj) dxj dyj . (2.23)

By expanding the star product which is defined in (2.6), we obtain the
representation

,(z)=
1
k! |C

|
C

} } } |
C

`
k

i< j

(xi&xj)(yi&yj)(xi&yj)(yi&xj)

_ `
k

j=1

(z&xj)(z&yj)
x&n&1

j y&n&1
j

(2?i)2 f(xj) } f(yj) dxj dyj . (2.24)

Equation (2.23) is our second integral representation for the denominator
of a vector Pade� approximant. It is only superficially similar to (2.11), and
these results are connected by

Q(z)=,(z) ,(0) (2.25)

which follows from (2.17) and (2.18).

2.2. The Denominator Polynomial for Hybrid, Generalised Inverse, Vector
Pade� Approximants

Motivated by a formula similar to (2.23) and the fact that Q(z) is
proportional to the square of the Pade� denominator q[n&k�k](z) in
the scalar (d=1) case, Graves-Morris [8] introduced a polynomial
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_(z)r- Q(z). His expressions for Q(z) and _(z) involve the umbral
calculus; here we need the equivalent expression based on (2.4), which
follows immediately from (2.24) and it is

_(z)=
1
k! |C

|
C

} } } |
C

`
k

i< j

(xi&xj)(yi&yj)(xi&yj)(yi&xj)

_ `
k

j=1

(z&xj)
x&n&1

j y&n&1
j

(2?i)2 f(xj) } f*(yj) dxj dyj . (2.26)

2.3. Denominator Polynomials Based on Inverses from Cl(Cd)

Complex-valued vectors can be represented by elements of a Clifford
algebra in different ways. Roberts [18] gave a different formulation of a
vector-valued Pade� approximation using a complex (universal) Clifford
Cl(Cd) in which the inverse of a vector v # Cd is taken to be

v&1 :=v(v } v)&1,

where v } v=�d
j=1 v2

j , provided that v } v{0.
With this approach, the real symmetric denominator polynomial Q(z) is

replaced by QC(z), also given by (2.2) but with the complex-valued matrix
elements

M C
ij := :

j&i&1

l=0

cl+i+n&2k } c j&l+n&2k&1 if i< j
(2.27)

:=&M C
ji if j�i

instead of (2.3). From the results (2.24) and (2.26), it follows directly that
the corresponding denominator polynomials in C[z] are

,C(z) :=
1
k! | | } } } | `

k

i< j

(xi&xj)(yi&yj)(xi&yj)(yi&xj)

_ `
k

j=1

(z&xj)(z&yj)
x&n&1

j y&n&1
j

(2?i)2 f(xj) } f(yj) dxj dyj (2.28)

which has degree 2k, and its corresponding hybrid version

_C(z) :=
1
k! || } } } | `

k

i< j

(xi&xj)(yi&yj)(xi&yj)(yi&xj)

_ `
k

j=1

(z&xj)
x&n&1

j y&n&1
j

(2?i)2 f(xj) } f(yj) dxj dyj , (2.29)
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which has degree k. Obviously, there is no distinction between (2.3) and
(2.27), or (2.22) and (2.28), or (2.26) and (2.29) if ci # Rd.

In Section 3 we prove a row convergence theorem for the hybrid vector
Pade� approximants whose specification is based on _(z) as defined by
(2.26).

3. ROW CONVERGENCE THEOREMS

In Subsection 2.1, we derived (2.23) as an integral representation of the
denominator polynomials ,(z) required for forming vector Pade� approx-
imants of type [n�2k]. The corresponding numerator polynomials will be
expressed using Nuttall's notation, in which

[�(z)]n
0 := :

n

i=0

�i zi

denotes the n+1 term MacLaurin section of �(z). The ordinary vector
Pade� approximant is

R(z)=P(z)�,(z), (3.1)

where the numerator polynomial is

P(z) :=[ f(z) ,(z)]n
0 . (3.2)

When the hybrid form is required, the approximant is

\(z)=?(z)�_(z), (3.3)

where _(z) is given by (2.26) and the numerator ?(z) is

?(z) :=[f(z) _(z)]n
0 . (3.4)

In the previous subsection, complex-valued denominator polynomials
,C(z) and _C(z) were defined by (2.28) and (2.29) for cases where ci # Cd

(rather than Rd). The corresponding approximants are similarly defined as

RC(z)=PC(z)�,C(z), \C(z)=?C(z)�_C(z), (3.5)

where

PC(z)=[f(z) ,C(z)]n
0 , ?C(z)=[f(z) _C(z)]n

0 . (3.6)
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We state and prove row convergence theorems for vector-valued Pade�
approximants and hybrid vector-valued Pade� approximants formed with
both the standard real-valued and then the complex-valued denominator
polynomials. To formulate these results, a dot is used to denote the leading
coefficient of a polynomial and a hat is used to denote the monic form of
a polynomial. Thus

,� (z)=,(z)�,4 (3.7)

is the monic polynomial derived from ,(z). We will consider functions f(z)
having precisely k poles at z1 , z2 , ..., zk (allowing repetition if f(z) has a
multipole), and we define

|(z)= `
k

i=1

(z&zi). (3.8)

We require f(z) to be analytic at the origin, and the poles to be ordered so
that

0<|z1|�|z2|� } } } �|zk|<r. (3.9)

Thus f(z) is assumed to be representable by

f(z)=
g(z)
|(z)

, (3.10)

where g(z) is analytic in |z|<r and g(zi){0 for i=1, 2, ..., k. We refer to
any case in which two or more of the zi are equal as a confluence of the
poles. We also define a punctured open disk by

D&
r :=[z # C : |z|<r]& .

k

i=1

[zi]. (3.11)

We next state a theorem of Graves-Morris and Saff and give a proof of
it based on the Pfaffian decomposition (2.13). By using (2.23) as a
representation of the denominator polynomial of a vector Pade� approxi-
mant, cases of confluence are much more easily handled.

Theorem 3.1. (Graves-Morris and Saff [12]). A vector-valued function
f(z) is given in the form of a MacLaurin series (2.1) and also by (3.10) in
which it is assumed that |(z) is real symmetric and that

g(zi) } g*(zi){0, i=1, 2, ..., k. (3.12)
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Let Rn (z) be the vector-valued Pade� approximant of type [n�2k] for f(z), as
in (3.1), and let ,n (z) be its associated denominator polynomial, as defined
by (2.23). Then

lim
n � �

Rn (z)=f(z), z # D&
r (3.13)

and the rate of convergence is governed by

lim sup
n � �

&f&Rn&1�n
K �+�r, (3.14)

where K is any compact subset of D&
r & [z # C : |z|�+] for any +<r.

The (monic) denominator polynomials converge as

lim
n � �

,� n (z)=(|(z))2 (3.15)

and their rate of convergence is governed by

lim sup
n � �

&,� n&|2&1�n
E �|zk| �r, (3.16)

where E is any compact subset of C.

Proof. We substitute (3.12) into (2.23) and use (2.5) to obtain

,n (z)=
1
k! | | } } } | `

k

i< j

(xi&xj)(yi&yj)(xi&yj)(yi&xj)

_ `
k

j=1

(z&xj)(z&y j)
x&n&1

j y&n&1
j

(2?i)2

g(xj) V g(yj)

|(xj) |(yj)
dxj dyj , (3.17)

where the contours for each xj , y j integration can now be taken to be
|xj|==, |yj |== with 0<=<|z1| . We expand all these contours to |z|=r$
for any r$ satisfying |zk|<r$<r. Assuming, for the moment, that the poles
of f(z) are distinct, we use the residue theorem and the fact that |(z) is real
symmetric to obtain the dominant term of ,n (z), for large n. It is defined
as

2n (z) :=
1
k!

:
k

l1=1

} } } :
k

lk=1

:
k

l $
1=1

} } } :
k

l $k=1

`
i< j

(zli&zlj)(zl $i
&zl $j

)(zli&zl $j
)(zl $i

&zlj)

_ `
k

j=1

(z&zlj)(z&zl $j
) z&n&1

lj z&n&1
l $j

g(zlj) } g*(zl $j
)

|$(zlj) |$(zl $j
)

. (3.18)
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To simplify (3.18), suppose that l1 , l2 , ..., lk have been assigned distinct
values in the range [1, k], and likewise for l $1 , l $2 , ..., l $k . Then we define

/= `
i< j

(zli&zl $j
)(zl $i

&zlj).

Note that /=0 if li=l $j for i< j and also /=0 if l $i=l j for i< j. By
tabulating l1 , l2 , ..., lk against l $1 , l $2 , ..., l $k we find that /{0 only if all
l $i=li . Hence (3.18) simplifies to

2n (z)=
1
k!

:
k

l1=1

} } } :
k

lk=1

`
i< j

(zli&zlj)
4

_ `
k

j=1

(z&zlj)
2 z&2n&2

lj

g(zlj) } g*(zlj)

|$(zlj)
2 . (3.19)

The summand in (3.19) is completely symmetric under interchange of the
indices l1 , l2 , ..., lk , and hence

2n (z)= `
i< j

(zi&zj)
4 `

k

j=1

(z&zj)
2 z&2n&2

j

g(zj) } g*(zj)
|$(zj)

2

= `
k

j=1

(z&zj)
2 z&2n&2

j g(zj) } g*(zj) (3.20)

and its monic form is

2� n (z)= `
k

j=1

(z&zj)
2=[|(z)]2. (3.21)

By taking the contributions from the contours expanded round |z|=r$ in
(3.17) into account, a similar reduction yields

,n (zj)=O \} zj

r$ }
2n

+ } `
k

i=1

z&2n
i , (3.22)

,4 n=_ `
k

j=1

z&2n&2
j g(zj) } g*(zj)& } \1+O \} zk

r$ }
n

++ , (3.23)

and

,n (z)=2n (z) \1+O \} zk

r$ }
n

++ (3.24)
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provided that 2n (z){0. From (3.21) and (3.24) we find the monic form

,� n (z)=[|(z)]2+O \} zk

r$ }
n

+ . (3.25)

For the case of distinct poles, we let r$ � r and then the results (3.15) and
(3.16) follow from (3.25). Now we consider cases of confluence. If any of
the points zi in (3.8) or (3.12) are repeated, so that f(z) has a multipole at
zi , we may re-express |(z) without loss of generality as

|(z)= `
}

j=1

(z&zj$)
mj, (3.26)

where the zj$ are distinct and [zj$]}
j=1=[zi]k

i=1 . From (3.10) we see that
small changes in the coefficients in the polynomial form of |(z) induce
small changes in the coefficients ci of f(z). Consider small changes which
make the zeros of |(z) distinct, say at z1 , z2 , ..., zk , but preserve the
property that all g(zi) } g*(zi){0. Because ,n (z) is a continuous function of
its parameters ci (see (2.24)), the results (3.24) and (3.25) remain true in
the confluent limit.

The results (3.13) and (3.14) follow using the original proof [12], and
there is no need to repeat it here. K

In fact, we can readily obtain a stronger result than is implied by the
statement of Theorem 3.1 about the rate of convergence of the denominator
polynomials at the poles of f(z). Again, by expanding the contours in
(3.17), we find that

,n (zj$)=O \} zj$
r$ }

2nmj

+ `
k

i=1

z&2n
i ,

similarly to (3.22). From (3.23) and then by taking the limiting value
r$ � r, we obtain

lim sup
n � �

|,� n (zj$)| 1�n� } zj$
r }

2mj

, j=1, 2, ..., k. (3.27)

As a corollary to Theorem 3.1, we state a result which is a generalisation
of the extension theorem of Graves-Morris and Saff [13]. In contrast to
the hypothesis (3.12) of the main theorem, we now consider cases in which

g(zj) } g*(zj)=0 (3.28)

for some values of j.
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Corollary 3.1. The assumption (3.10) that f(z) has the representation

f(z)=g(z)�|(z),

where |(z) is the real symmetric polynomial as expressed by (3.8), (3.9), and
(3.26), is continued together with

g(zj$){0, j=1, 2, ..., }.

If g(zj$) } g*(zj$)=0 for some value of j, let *j denote the precise order
of the zero of g(z) } g*(z) at zj$, and use the convention that *j=0 if
g(zj$) } g*(zj$){0. Assume that *j<2mj and define

2& := :
}

j=1

(2mj&*j). (3.29)

Let Rn (z) be the vector Pade� approximant of type [n�2&] for f(z), as in
(3.1), and let ,n (z) be its associated denominator polynomial, as defined by
(2.23). Then the convergence results (3.13)�(3.16) of Theorem 3.1 hold as
stated under the more general conditions of (3.28) and (3.29). Moreover

lim sup
n � �

|,� n (zj$)| 1�n� } zj$
r }

2mj&*j

, j=1, 2, ..., }. (3.30)

Proof. We define H(z), h(z), and S=[z$1 , z$2 , ..., z$k] by

H(z) :=
g(z) } g*(z)

|(z)2 =
h(z)

>}
j=1 (z&zj$)

2mj&*j
, (3.31)

where h(z) is analytic in |z|<r and all h(zj$){0. We call *j the nullity of
the zero of g(zj$) } g*(zj$) at zj$.

If ` # S & R, then g(`) } g*(`)=|g(`)| 2{0 and there is an index i for
which `=zi$ is a pole of H(z) of even multiplicity 2mi and nullity *i=0.

If ` # S & [C"R], we call ` a (strictly) complex pole and there exist dif-
ferent indices i, j for which `=zi$ and `*=zj$. Both h(z) and H(z) are real
symmetric, and so mi=mj , *i=*j , and zi$, zj$ are both poles of H(z) of
multiplicity 2mi&*i .

We have just seen that the real poles of H(z) are of even multiplicities,
and that the complex poles of H(z) occur in complex conjugate pairs.
Recalling (3.29), we see that 2& is the even integer denoting the number of
poles, counting multiplicities, of H(z) in |z|<r. Therefore we may con-
sistently enumerate these poles, allowing repetition, as

z1 , z1*, z2 , z2*, ..., z& , z&*.
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The denominator polynomial ,n (z) of degree 2& is defined by (2.23) with
& replacing k. The proof now follows the proof of the main theorem, with
& replacing k throughout. K

The special case of this corollary in which each *j=mj was first proved
[13] using the diagonally signed matrix theorem. In terms of the statement
of Corollary 3.1, the conjecture of Graves-Morris and Saff [12] is that
the convergence results (3.13)�(3.16) continue to hold for vector Pade�
approximants Rn (z) of type [n�2&], where

2& := :
k

j=1

max[(2mj&*j), 1]

instead of (3.29). Corollary 3.1 contains the assumption that *j<2mj , and
in this respect the conjecture is only partially proved. However, the proof
of Corollary 3.1 depends on the existence of poles of total multiplicity
�k

j=1 (2mj&*j) in |z|<r and so it seems that Corollary 3.1 probably has
the correct generality with respect to the value of 2&. The results (3.27) and
(3.30) are stronger results about the rate of convergence of the
denominators at zeros of |(z) than is directly implied by (3.15) and (3.16)
in the statement of the main theorem. They parallel and strengthen the
key property previously found by Graves-Morris and Saff [12, Eq. (3.30)]
and used to prove the main theorem. The proofs of Theorem 3.1 and
Corollary 3.1 given here are noticeably shorter than the original proofs,
and they facilitate the following developments.

The first development is a row convergence theorem for hybrid
approximants associated with the real-valued denominator polynomials
which are derived from formulations using generalised inverses.

Theorem 3.2. A vector-valued function f(z) is given in the form of a
MacLaurin series (2.1) and also by (3.10) in which it is assumed that |(z)
is real symmetric and that

g(zi) } g*(zi){0, i=1, 2, ..., k.

Let \n (z) be the vector-valued Pade� approximant of type [n�k] for f(z), as
in (3.3), and let _n (z) be its associated denominator polynomial, as defined
by (2.26). Then

lim
n � �

\n (z)=f(z), z # D&
r
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and the rate of convergence is governed by

lim sup
n � �

&f&\n&1�n
K �+�r,

where K is any compact subset of D&
r & [z # C : |z|�+] for any +<r.

The (monic) denominator polynomials converge as

lim
n � �

_̂n (z)=|(z)

and their rate of convergence is governed by

lim
n � �

&_̂n&|&1�n
E �|zk| �r,

where E is any compact subset of C.

Proof. The proof follows that of Theorem 3.1 closely. Notice that (3.17)
is replaced by

_n (z)=
1
k! | | } } } | `

k

i< j

(xi&xj)(yi&yj)(xi&yj)(yi&xj)

_ `
k

j=1

(z&xj)
x&n&1

j y&n&1
j

(2?i)2

g(xj) V g(yj)
|(xj) |(yj)

dxj dyj , (3.32)

that (3.18) is replaced by

2n (z) :=
1
k!

:
k

l1=1

} } } :
k

lk=1

:
k

l $
1=1

} } } :
k

l $k=1

`
i< j

(zli&zlj)(zl $i
&zl $j

)(zli&zl $j
)(zl $i

&zlj)

_ `
k

j=1

(z&zlj) z&n&1
lj z&n&1

l $j

g(zlj) } g*(zl $j
)

|$(zlj) |$(zl $j
)

,

and that (3.21) is replaced by

2� n (z)=|(z). K

The result corresponding to (3.27) is

lim sup
n � �

|_̂n (zj$)| 1�n� } zj$
r }

mj

.
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The statement of Corollary 3.1 applies identically as a corollary to
Theorem 3.2, except that (3.30) is replaced by

lim sup
n � �

|_̂n (zj$)| 1�n� } zj$
r }

mj&*j

, j=1, 2, ..., },

and its proof is almost identical too.
Next, we state Roberts' row convergence theorem for approximants

formed using the vector inverses of a complex Clifford algebra, and then
the corresponding theorem for the hybrid approximants. It is interesting to
contrast his hypotheses that g(zi) } g(zi){0 with (3.12) and to notice the
fact that his theorems do not require |(z) to be real symmetric. Roberts
used Saff 's 1972 method to prove results which, shorn of their Clifford
elements, are equivalent to the following theorem:

Theorem 3.3 (Roberts [22]). A vector-valued function f(z) is given in
the form of a MacLaurin series (2.1) and also by (3.10) and it is assumed
that

g(zi) } g(zi){0, i=1, 2, ..., k.

Let Rn (z) be the vector-valued Pade� approximant of type [n�2k] for f(z), as
in (3.5), and let ,C

n (z) be its associated denominator polynomial, as defined
by (2.23). Then

lim
n � �

RC
n (z)=f(z), z # D&

r

and the rate of convergence is governed by

lim sup
n � �

&f&RC
n &1�n

K �+�r,

where K is any compact subset of D&
r & [z # C : |z|�+] for any +<r.

The (monic) denominator polynomials converge as

lim
n � �

,� C
n (z)=(|(z))2

and their rate of convergence is governed by

lim sup
n � �

&,� C
n &|2&1�n

E �|zk| �r,

where E is any compact subset of C.
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Proof. The proof is almost identical to that of Theorem 3.1, but notice,
for example, that (3.17) is replaced by

,C
n (z)=

1
k! | | } } } | `

k

i< j

(xi&xj)(yi&yj)(xi&yj)(yi&xj)

_ `
k

j=1

(z&xj)(z&yj)
x&n&1

j y&n&1
j

(2?i)2

g(xj) } g(yj)
|(xj) |(yj)

dxj dyj . K

Theorem 3.4. A vector-valued function f(z) is given in the form of a
MacLaurin series (2.1) and also by (3.10) and it is assumed that

g(zi) } g(zi){0, i=1, 2, ..., k.

Let \C
n (z) be the vector-valued Pade� approximant of type [n�k] for f(z), as

in (3.1), and let _C
n (z) be its associated denominator polynomial, as defined

by (2.23). Then

lim
n � �

\C
n (z)=f(z), z # D&

r

and the rate of convergence is governed by

lim sup
n � �

&f&\C
n &1�n

K �+�r,

where K is any compact subset of D&
r & [z # C : |z|�+] for any +<r.

The (monic) denominator polynomials converge as

lim
n � �

_̂C
n (z)=|(z)

and their rate of convergence is governed by

lim sup
n � �

&_̂C
n &|&1�n

E �|zk| �r,

where E is any compact subset of C.

Proof. The proof is virtually identical to that of Theorem 3.3, but notice
that (3.32) is replaced by

_C
n (z)=

1
k! || } } } | `

k

i< j

(xi&xj)(yi&yj)(xi&yj)(yi&xj)

_ `
k

j=1

(z&xj)
x&n&1

j y&n&1
j

(2?i)2

g(xj) } g(yj)
|(xj) |(yj)

dxj dyj .
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4. CONCLUSION

We have compared and contrasted four different types of vector Pade�
approximants, each with its distinctive merits. The type of the approximant
is determined by two factors, namely (i) whether the coefficients of the
denominator are necessarily real or if they can be complex valued, and
(ii) whether the denominator has degree (called 2k) which is double that
of the equivalent Pade� approximant or if the denominator is of the hybrid
variety (of degree k). We have shown that all four types admit row con-
vergence theorems analogous to de Montessus' 1902 theorem.
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